INTRODUCTION

Keywords: Mercury; Toxicity; Newborn; Thimerosal; Learning disabilities.

Abstract

Received 1 February 2001; accepted 13 September 2001.

Coauthor for correspondence. M. G. C. 0701-0026.

In the context of nutrition, health issues, and environmental concerns, the study of mercury exposure in infants and young children is of increasing importance. Mercury is a potential human toxicant that has long been the subject of scientific and regulatory scrutiny. In recent years, there has been growing concern about the potential neurotoxic effects of mercury exposure in utero and during early childhood.

doi:10.1016/S0963-9969(00)00481-9

For permission to reproduce this article, please contact the Reprints Department at Elsevier. Address: Customer Service, Elsevier, 360 Park Avenue South, New York, NY 10010, USA. Tel: +1-800-828-9313; +1-212-633-3815; Fax: +1-212-633-3820.

Correspondence: (Redwood) l.redwood@mp.medscape.com (L. Redwood).

INTRODUCTION

Keywords: Mercury; Toxicity; Newborn; Thimerosal; Learning disabilities.

Abstract

Received 1 February 2001; accepted 13 September 2001.

Coauthor for correspondence. M. G. C. 0701-0026.

In the context of nutrition, health issues, and environmental concerns, the study of mercury exposure in infants and young children is of increasing importance. Mercury is a potential human toxicant that has long been the subject of scientific and regulatory scrutiny. In recent years, there has been growing concern about the potential neurotoxic effects of mercury exposure in utero and during early childhood.

doi:10.1016/S0963-9969(00)00481-9

For permission to reproduce this article, please contact the Reprints Department at Elsevier. Address: Customer Service, Elsevier, 360 Park Avenue South, New York, NY 10010, USA. Tel: +1-800-828-9313; +1-212-633-3815; Fax: +1-212-633-3820.

Correspondence: (Redwood) l.redwood@mp.medscape.com (L. Redwood).
Materials and Methods

In order to assess the impact of mercury in the environment, the mercury levels in fish and other aquatic species need to be determined. The mercury content in fish is measured by analyzing the tissue samples. The mercury content in fish is determined by a combination of wet and dry ashing methods. The wet ashing method involves the digestion of the fish sample in a mixture of acids and the determination of the mercury content in the resulting solution. The dry ashing method involves the combustion of the fish sample in a muffle furnace and the determination of the mercury content in the resulting ash.

The mercury content in the fish samples is then compared to the mercury levels in the water and sediments. The mercury levels in the water and sediments are determined by the same methods as for the fish samples. The mercury levels in the water and sediments are then compared to the mercury levels in the fish samples to determine the mercury bioavailability in the environment.

Recent studies have shown that mercury bioavailability in the environment is influenced by factors such as the mercury concentration in the water, the pH of the water, and the presence of organic matter. The mercury bioavailability in the environment is also influenced by the mercury content in the fish and other aquatic species. The mercury content in the fish and other aquatic species is influenced by the mercury levels in the water and sediments.

Recent studies have shown that mercury bioavailability in the environment is influenced by factors such as the mercury concentration in the water, the pH of the water, and the presence of organic matter. The mercury bioavailability in the environment is also influenced by the mercury content in the fish and other aquatic species. The mercury content in the fish and other aquatic species is influenced by the mercury levels in the water and sediments.
The results of the model calculations are given in Figure 2. The solid line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dashed line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dash-dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months.

The results of the model calculations are given in Figure 2. The solid line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dashed line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dash-dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months.

The results of the model calculations are given in Figure 2. The solid line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dashed line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dash-dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months.

The results of the model calculations are given in Figure 2. The solid line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dashed line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dash-dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months.

The results of the model calculations are given in Figure 2. The solid line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dashed line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months. The dash-dotted line shows the model estimation of the effect of 1% extraction on the percentage body weight at 6 months.
Adult Exposure Scenarios

I ppm

Peak concentrations rise 30 minutes after contact. Hair levels may reach as high as 5 ppm at any time. The highest peak concentration is 5 ppm on day 30. Hair levels of up to 2 ppm are expected to be present after 60 days. Hair levels exceed 2 ppm for at least 6 months. The estimated half-life of the chemical is 60 days.

No Exception Scenarios

Hair levels for medium weight individuals (50th percentile) are predicted to reach the 1 ppm mark at 18 months of age. Hair levels for medium weight individuals (50th percentile) are expected to reach 5 ppm at any time. The highest peak concentration is 5 ppm on day 30. Peak concentration of 5 ppm is expected to be present after 60 days. Hair levels exceed 2 ppm for at least 6 months. The estimated half-life of the chemical is 60 days.
The tension arises in which scenario model.

CHEEK, 1951

Experimental studies on the role of the hypothalamic-pituitary axis and the relationship of this axis to the hypothalamus and pituitary gland. The relationship of the hypothalamic-pituitary axis to the hypothalamus and pituitary gland has been investigated by various methods. However, the exact mechanism by which the hypothalamic-pituitary axis regulates the function of the hypothalamus and pituitary gland remains unclear. Further studies are needed to clarify the role of the hypothalamic-pituitary axis in the regulation of the hypothalamus and pituitary gland.

DISCUSSION

Infants are born with a more or less perfect model of development. This model is characterized by rapid growth and development in all areas. The infant's growth and development are influenced by various factors, including genetic factors, environmental factors, and personal factors. The infant's growth and development are also influenced by the interaction between various factors. The infant's growth and development are influenced by the interaction between various factors, including genetic factors, environmental factors, and personal factors.

<table>
<thead>
<tr>
<th>Adult prevention</th>
<th>Adult prevention</th>
<th>Adult prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>No prevention</td>
<td>High prevention</td>
<td>Very high prevention</td>
</tr>
<tr>
<td>45</td>
<td>310</td>
<td>695</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days since birth</th>
<th># Dogs</th>
<th>% Pup survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>48</td>
<td>42</td>
</tr>
</tbody>
</table>

Table I
REFERENCES

CONCLUSIONS